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Abstract: This paper presents first order sliding mode controller and input-output linearization technique for the control of 
inverted pendulum system. Sliding mode controller is considered as an efficient tool for studying different systems due to its 
accuracy and robustness to disturbances. The stability analysis is performed by Lyapunov function for the controllers. The 
performance of proposed controllers has been demonstrated by comparing the results of cart position and angular position of 
inverted pendulum with each other. 
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Introduction 
Underactuated systems find ready applications in robotics and automobile field. These systems are having less number of 
actuators than their degrees of freedom [1]. There is a difficulty in controlling these systems because the techniques which 
are developed for the fully actuated systems cannot be directly used. Also these systems are not feedback linearizable [2]. 
The underactuated systems present challenging control problems. One of the common methods in controlling underactuated 
systems is the use of sliding mode controller based on the Lyapunov design. 
The sliding mode controller (SMC) has been considered as best approach due to its robustness to the disturbances and its high 
accuracy. It consists of two steps: the first is to choose a surface that forces the trajectories to remain along the sliding surface 
and the second is to choose a state feedback which is capable of forcing the state variables to reach the surface in a finite 
time. The only drawback of SMC is the chattering effect which is caused by high frequency oscillations of the proposed 
controller [3]. These high frequency components may degrade the system performance and can also lead to instability of the 
system. There are three methods to control the chattering effect. 
The first one is to use the saturation control instead of the discontinuous control. It ensures the convergence to a boundary 
layer of the sliding surface. Although it ensures the convergence, the accuracy and the robustness of the sliding mode are 
partially lost. The second one is the use of observer based approach [4]. It can approximate the robust control problem to the 
robust estimation. This can lead to deterioration of the robustness with respect to the uncertain disturbances. The third one is 
the use of higher order sliding mode control [5,6] however the second order is frequently used due to its simple structure and 
gives good robustness to the disturbances. The stability and convergence of the second order sliding mode controller is a 
challenging task to face the difficulties with disturbances. However Lyapunov function provides the stability and finite time 
convergence of the system. 
Inverted pendulum is considered as a typical nonlinear underactuated system because of its instability at its upright position. 
For this system the control input is the force u which is used to move the cart horizontally and the output is the angular 
deviation of the pendulum from its upright position . Despite from its simple structure the system needs sophisticated 
methods to control it. Also it is proven that the system is not feedback linearizable and has no constant relative degree. The 
main difficulty exists in moving the pendulum from its stable downward position to the unstable upright position by keeping 
the cart stable. The main objective is to develop a robust controller based on the first order SMC applied to inverted 
pendulum. Stability is carried out by using the Lyapunov function for the proposed controller [7]. 
Input-output linearization technique is also used to control the inverted pendulum. With a high gain the controller used in the 
input-output linearization, the system becomes singly perturbed with respect to zero dynamics. This implies the dynamics 
under this technique has a fast transient and therefore the zero dynamics can be treated as independent system. This paper is 
organized as follows. Section 2 explains the mathematical modeling of the inverted pendulum system and the first order 
sliding mode controller. Section3 deals with the input-output linearization technique. Section 4 describes the simulation 
results of the proposed controllers. 
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Figure1. Inverted Pendulum [8] 
 

Mathematical model and control approach of an inverted pendulum  
 
Mathematical model 
The inverted pendulum is a single input multi output system having one input and two outputs. Gears in the motor couple the 
rotation of the motor into linear motion of the cart. The behavior of an inverted pendulum is described by the following 
equations: 

2( ) ( ) cos sin2 1M m x B K x m l m l K ueq             
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Where, l     =   length of the pendulum, 
           m    =   mass of the pendulum, 
           M  =   mass of the cart,  
          

1K u  =   horizontal force, 

                =   deviation of the pendulum from its upright position, 
                x    =   cart position.  
To express the differential equation into a state space, the following state variables for the system are defined as: 
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From eq (1) by subjecting x and  while substituting their values in another equation we can get eq (2) as  
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Finally, the state space representation of the inverted pendulum with actuator is represented as 
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Voytsekhovsky and Hirschorn [9] introduced a method that can make the original system appropriate to an input-output 
linearizable system with new coordinates. This is based upon the coordinate transformation by mapping :T x z  whereas z 

is defined by 1
( )

i
z L h x
i f


  i∈ {1, 2, 3, and 4}; T is defined as local diffeomorphism. The dynamic system of the model can be 

approximated as follows  
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where,  ( )L h xf  is the Lie derivative of h(x), by definition of the output system in eq (3) 

( ) ( ) log(tan sec )
1 3 3

z x H x x l x                                                                (6) 

With the output y=h(x) we proceed to find diffeomorphism 
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By differentiating eq (6) we can get z(x). As a result, the approximate linearized system is given below 
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First order sliding mode controller  

By defining the sliding surface as 
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The derivative of the sliding surface along the system trajectory becomes  
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Lyapunov function based on the sliding surface is chosen as V=0.5s2                                            (10) 
The definition of the control action is specified in a way that the derivative of the Lyapunov function should be negative 
definite. So, for ( )V s ss   to be negative definite s  and s should be of opposite sign. This is a fundamental condition for the 
system to reach the sliding surface. Various laws that meet this reaching condition and these are called as reaching laws.  
 In this paper, we consider the power reaching law having the form  
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The sliding mode control action involves in evaluating the S and equating it to the reaching law. To deal with the chattering 
phenomena the continuous functions such as saturation and relay functions are approximated to the discontinuous functions 
such as sign functions.  
The sliding mode control is defined as  
u u u
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. Because of the Lyapunov function the convergence and stability of the system is guaranteed. 

 
Input-Output Linearization 
The aim of the input-output linearization is to obtain a state feedback control that linearizes the map between system output 
and virtual control input through state transformation. If the relative degree is less than the order of the system, then the 
nonlinear system is only partially feedback linearized [11] and therefore consists of feedback linearized system controlled by 
a virtual control input. Then the internal dynamics of a system is defined as: 
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Thereafter, the virtual control input only affects the feedback linearizable system. Hence the internal dynamics is 
uncontrolled by the virtual control. To design the input-output linearization control for the output y=x3 we have to 
differentiate repeatedly until u appears as shown below: 
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where, v1 is defined as 1 3 3 4 4v k x k x   . k3 and k4 are designed using the pole placement technique. From the above 

equation we can get u by substituting the values of f4 and g4. 
 
Results and Discussions  
SMC using approximate linearization and input-output linearization techniques have been designed for the stabilization of 
inverted pendulum system. The proposed controllers are designed using MATLAB ODE45. In the first order sliding mode 
controller main disadvantage is chattering in the control input. But it can be further reduced by using second and higher order 
SMC. In this paper chattering phenomenon is reduced by approximating continuous functions to discontinuous sign 
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functions. Parameters of the inverted pendulum are taken as M = 0.94 kg, m = 0.23 kg, l = 0.3302m, g = 9.8 N/kg. The 

initial conditions of the cart pendulum are     , 0,0 , , 0.2,0)0 0 0 0y y     and the desired position for the cart is set as 0.2. 

 

 
 

Figure2. Position of the cart for the uncertain system 
 

 
 

Figure3. Position of the pendulum for uncertain systems 
 

 
 

Figure4. Position of the cart for uncertain system 
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Figure5. Angular position of the pendulum 
 
Simulation results of the proposed controllers are shown by above figures. Results are done by using  =2.5, k=15, =0.2 
=0.1. For input-output linearization the values of k3 and k4   are taken as 100.25 and 20. These values are obtained through 
pole placement technique. The proposed controllers are compared in tabular form. From the figures 2 and 3 it is inferred that 
the cart has a rise time of 2sec and settling time of 3sec. The pendulum settles in 3.5sec without having any overshoot. 
Similarly from the figures 4 and 5 it is observed that the settling time of the cart is 4 sec and rise time is 3 sec without having 
any steady state error. But in comparison SMC gave better performance to input-output linearization technique. 
 

Table 1. Comparison of Results 
 

S. No Techniques for the inverted pendulum 
Parameters SMC Input-output linearization 

1. Cart referrence 0.2 0.2 
2. Settling time of the cart 3 sec 4 sec 
3. Settling time of the pendulum 3.5 sec 4 sec 
4. Rise time of the cart 2 sec 3 sec 
5. Overshoot Nil Nil 
6. Steady state error Nil Nil 

 
Conclusions   
In this paper first order SMC and input-output linearization technique have been successfully applied for the control of 
inverted pendulum system. From the results shown through figures it is clearly known that both the controllers met the 
desired goals with satisfactory performance. But sliding mode controller (SMC) has been found to be more robust to 
disturbances. The nonlinear controller designed on the feedback linearization has shown the better performance compared to 
linearization technique. 
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